Login for faster access to the best deals. Click here if you don't have an account.

Neutron and gamma radiation shielding properties Private

4 weeks ago Automobiles Burhānuddin   18 views

-- ৳

  • neutron-and-gamma-radiation-shielding-properties-big-0
Location: Burhānuddin
Price: -- ৳

High performed new heavy concrete samples were designed and produced that absorption parameters were determined for gamma and neutron radiation by using Monte Carlo Simulation program GEANT4 code. In the sample production, many different materials were used such as; chromite (FeCr2O4), wolframite [(20Fe,80Mn) WO4], hematite (Fe2O3), titanium oxide (TiO2), aluminum oxide (Al2O3), limonite (FeO (OH) nH2O), barite (BaSO4), materials. Furthermore, calcium aluminate cement (CAC) was utilized for high temperature resistant. In the current study, five different new heavy concrete samples were produced then physical and chemical strength of them tested. High-temperature-resistant tests were made at 1000°C and good resistance against high temperature was observed. Neutron equivalent dose measurements were made for by using 4.5 MeV energy 241Am-Be fast neutron source. Results compared with paraffin and conventional concrete. It was found that the new heavyweight concretes had the better absorption capacity than paraffin and conventional concrete. Gamma radiation absorption measurements also were carried out at the energies of 160, 276, 302, 356, and 383 keV by using 133Ba point radiation source. It has been suggested that the new produced concretes can be used for radiation safety in the nuclear applications.
Radiation is often used in applications such as in energy production, in medicine diagnosis and treatment, in material research and investigation. In addition, it is also used in such areas as agriculture, archeology (in carbon determination), space exploration, military, geology, and many others (U.S. NRC, 2010). Radiation leaks may occur during these applications (Lamarsh, & Baratta, 2001); therefore, it must be properly shielded. In radiation shielding works, conventional materials such as concrete, steel, alloy, ceramic, glass, and polymers are widely used (Aygün et al., 2019; Kumar, Sayyed, Dong, & Xue, 2018; Sayyed, Akman, Kumar, & Ka?al, 2018). In these studies, concrete is among the most widely used materials (Li et al., 2017). Concrete is a composite material which glued in such a way that aggregate particles (sand, gravel, stone, and filler) with cement or a binder. Traditional concrete is not as effective in [url=http://www.nuclear-shield.com/nuclear-shielding-material/]nuclear shielding material[/url] radiation, but it is a very common used building material. The traditional concrete [url=http://www.nuclear-shield.com/nuclear-shielding-material/lead/lead-bricks-for-radiation-shielding.html]lead bricks for radiation shielding[/url] characteristic may vary and is dependent on the chemical composition of the concrete. New types of concrete samples have been developed by different the aggregated used for preparing concrete, depending on the available natural and artificial materials (Mukhtar, Shamsad, Al-Dulaijan, Mohammed, & Akhtar, 2019; Chen, 1998). Heavy concrete is the most common material used in [url=http://www.nuclear-shield.com/radiation-shielding-equipment/]radiation shielding equipment[/url]. Heavy concrete is obtained by adding high-density aggregates into normal concrete. Normal-weight concrete density varied between 2200 and 2450 kg/m3 while heavy concrete’s density is ranging from about 2900 and 6000 kg/m3 (Nawy, 1997). Some natural minerals such as hematite, magnetite, limonite, serpentine, siderite and barite can be used as aggregates in heavy concrete production. In literature, numerous experimental and theoretical researches have been conducted to develop new heavy concrete.

Additional Details

Car Brand Acura

 
   বিজ্ঞাপন দিন